Global finite element matrix construction based on a CPU-GPU implementation

نویسندگان

  • Francisco Javier Ramírez-Gil
  • Marcos de Sales Guerra Tsuzuki
  • Wilfredo Montealegre-Rubio
چکیده

The finite element method (FEM) has several computational steps to numerically solve a particular problem, to which many efforts have been directed to accelerate the solution stage of the linear system of equations. However, the finite element matrix construction, which is also time-consuming for unstructured meshes, has been less investigated. The generation of the global finite element matrix is performed in two steps, computing the local matrices by numerical integration and assembling them into a global system, which has traditionally been done in serial computing. This work presents a fast technique to construct the global finite element matrix that arises by solving the Poisson’s equation in a three-dimensional domain. The proposed methodology consists in computing the numerical integration, due to its intrinsic parallel opportunities, in the graphics processing unit (GPU) and computing the matrix assembly, due to its intrinsic serial operations, in the central processing unit (CPU). In the numerical integration, only the lower triangular part of each local stiffness matrix is computed thanks to its symmetry, which saves GPU memory and computing time. As a result of symmetry, the global sparse matrix also contains non-zero ∗Corresponding author Email addresses: [email protected] (Francisco Javier Ramı́rez-Gil), [email protected] (Marcos de Sales Guerra Tsuzuki), [email protected] (Wilfredo Montealegre-Rubio ) Preprint submitted to arXiv.org January 21, 2015 ar X iv :1 50 1. 04 78 4v 1 [ cs .N A ] 2 0 Ja n 20 15 elements only in its lower triangular part, which reduces the assembly operations and memory usage. This methodology allows generating the global sparse matrix from any unstructured finite element mesh size on GPUs with little memory capacity, only limited by the CPU memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Matrix Generation on a Gpu

This paper presents an efficient technique for fast generation of sparse systems of linear equations arising in computational electromagnetics in a finite element method using higher order elements. The proposed approach employs a graphics processing unit (GPU) for both numerical integration and matrix assembly. The performance results obtained on a test platform consisting of a Fermi GPU (1x T...

متن کامل

Architecting the finite element method pipeline for the GPU

The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core stream...

متن کامل

Exploiting Batch Processing on Streaming Architectures to Solve 2D Elliptic Finite Element Problems: A Hybridized Discontinuous Galerkin (HDG) Case Study

Numerical methods for elliptic partial differential equations (PDEs) within both continuous (CG) and hybridized discontinuous Galerkin (HDG) frameworks share the same general structure: local (elemental) matrix generation followed by a global linear system assembly and solve. The lack of inter-element communication and easily parallelizable nature of the local matrix generation stage coupled wi...

متن کامل

Sparse linear algebra on a GPU

We investigate what the graphics processing units (GPUs) have to offer compared to the central processing units (CPUs) when solving a sparse linear system of equations. This is performed by using a GPU to simulate fluid-flow in a porous medium. Flow-problems are discretized mainly by the mimetic finite element discretization, but also by a two-point fluxapproximation (TPFA) method. Both of thes...

متن کامل

GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography

We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1501.04784  شماره 

صفحات  -

تاریخ انتشار 2015